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 Abstract 

The combination of CRISPR-based gene editing and pharmacological therapies 
offers a promising strategy for treating genetic diseases. CRISPR enables precise 
genome modifications (base/prime editing, knock-in/out), while advanced 
delivery systems enhance its therapeutic potential. In cancer immunotherapy, 
CRISPR-engineered CAR-T cells address challenges like autologous production, 
drug resistance, and toxicity. Combining CRISPR with drugs improves efficacy, 
overcomes resistance, and optimizes delivery by targeting DNA repair pathways. 
However, challenges such as off-target effects, immune responses, and ethical 
concerns remain. Pharmacological agents can boost CRISPR precision by 
inhibiting DNA repair. Future efforts should refine CRISPR systems, integrate 
AI-driven personalized medicine, and tackle polygenic diseases. Rigorous research, 
ethical oversight, and regulatory frameworks are essential before clinical adoption. 
While progress is encouraging, further improvements in safety, efficacy, and 
accessibility are needed to establish this approach as a mainstream therapy. 
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INTRODUCTION
Gene therapy, particularly Adeno-associated 
viruses AAV vectors, offers promising root-cause 
treatment for 7,000+ genetic diseases, though 
challenges in complexity and ethics persist amid 
ongoing clinical progress. (1) The goal of gene 
therapy is to slow the progression of 
neurodevelopmental disorders by developing 
adeno-associated viral vectors that target diseases 
of the central nervous system, potentially 
revolutionizing treatment options.(2)Ex vivo gene 
editing is a technique used to treat hereditary skin 

disorders by repairing defective genes in a patient's 
external cells and reintroducing them into the 
body.(3) Luxturna®, the first approved gene 
therapy for Leber congenital amaurosis type, 2 is 
one of several clinical trials being conducted to 
assess gene therapies for inherited retinal diseases 
(IRDs). (4)Another innovative approach is prime 
editing, which enables precise genetic alterations, 
including insertions, deletions, and base changes. 
This technique has been investigated in preclinical 
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studies for conditions like cystic fibrosis, beta-
thalassemia, and neurodegenerative diseases. (5) 
 
EMERGENCE OF GENETIC THERAPY 
Targeting oncogenic pathways with high-quality 
treatment may be a promising cancer treatment. 
This strategy has been improved by developments 
in molecular biology, such as programmable 
nucleases like ZFNs, TALENs, and CRISPR/Cas9 
systems, which enable accurate targeting and 
change of genetic information within cancer cells, 
potentially providing therapeutic advantages.(6) 
By using nanoparticles, which can be either 
inorganic or biological, nanomedicine is 
improving the delivery and effectiveness of gene 
therapy for the treatment of cancer.(7) Although 
they encounter difficulties in clinical application, 
nonviral gene therapy vectors such as gene 
transfer, RNA interference, and epigenetic 
regulation offer promise in the treatment of breast 
cancer.(8) Similarly, gene therapy for 
gastrointestinal cancers involves the use of 
therapeutic genes and the exploration of vectors, 
with recent trials showing encouraging safety and 
efficacy profiles, despite not being widely adopted 
in clinical practice yet. (9). By modifying cancer-
causing mutations, boosting immune responses, 
and upsetting tumor survival systems, gene 
therapy, immune-based therapies, and CRISPR 
technologies are transforming precision 
medicine(10). Thanks to continuing clinical trials 
and improvements in delivery technologies, gene 

therapy has a lot of promise for personalized 
cancer treatments(11). 
 
INTRODUCTION TO CRISPR-CAS 
SYSTEMS 
CRISPR-based gene therapy combined with 
pharmacological treatments holds promise for 
genetic diseases, but requires advanced delivery 
systems and rigorous clinical validation for safe, 
effective translation(12). Gene-editing technology 
provides therapeutic options for hereditary 
illnesses such as cystic fibrosis, thalassemia, and 
Duchenne muscular dystrophy by precisely 
targeting particular genes to create desirable 
modifications (13). While CRISPR offers 
therapeutic potential, challenges like off-target 
effects and delivery efficiency must be resolved for 
clinical success (14). Combining CRISPR/Cas9-
based genome editing with drug therapies holds 
the potential to enhance treatment efficacy. For 
instance, CRISPR can be used to make genetic 
edits that bolster the body’s response to drugs or 
reduce resistance, thereby amplifying drug 
effectiveness (15). In cancer therapy, integrating 
CRISPR technology with existing 
chemotherapeutic regimens could improve 
outcomes by targeting and modifying genes 
associated with drug resistance or by making 
cancer cells more susceptible to treatment (16). 
This interdisciplinary approach could eventually 
lead to breakthrough treatments for genetic 
disorders, offering patients novel and potentially 
curative options (17) as illustrated in Fig. no 1
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Fig. 1. The mechanisms of action of the CRISPR/Cas9 system, including nonhomologous end-joining 
(NHEJ), homology-directed repair (HDR), single-guide RNA (sgRNA), and protospacer adjacent motif 

(PAM),(18) 
 
RATIONALE FOR COMBINATION 
THERAPIES 
The rationale for employing combination 
therapies in medicine is multi-faceted, with the 
goal of enhancing treatment outcomes, reducing 
side effects, and overcoming drug resistance. 
 
1.Enhanced Efficacy and Synergy:  
Combination therapies are designed to target 
multiple pathways simultaneously, providing a 
more effective response than monotherapy alone. 
For instance, in cancer treatment, combining 
different drugs can inhibit several cancer-signaling 
pathways or functions, thereby maximizing 
therapeutic impact (19). This approach has been 
particularly successful in oncology and is applied 
in other areas like obesity treatment and multiple 
sclerosis(20). 
 
2. Reduced Toxicity:  
Combining drugs with lower doses minimizes 
toxicity, especially in cancer treatments, where 

achieving optimal therapeutic doses without 
severe side effects is challenging(21). 
 
3. Overcoming Drug Resistance: 
Combination therapies targeting multiple disease 
progression pathways, such as DNA repair 
inhibition in cancer cells, can enhance treatment 
efficacy against resistant cancer cells, a significant 
challenge in disease management(22). 
 
4.Personalized and Precision Medicine:  
Advances in systems pharmacology and 
computational modeling enable personalized 
combination therapies, improving patient 
outcomes and minimizing side effects by 
understanding disease mechanisms and drug 
interactions (23). 
 
5. Multimodality Strategies:  
Multimodal therapies improve outcomes, 
minimize resistance, and tailor treatment for 
aggressive cancers(24). 
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CRISPR-BASED GENE THERAPY 
RNA-guided Cas proteins enable precise targeting, 
while miniaturized CRISPR systems expand gene-
editing potential by easing delivery challenges (25). 
CRISPR-Cas uses spacer-containing arrays to 
direct Cas proteins in identifying and cutting 
specific nucleic acid targets.(26) CRISPR-Cas 
combines spacer integration and DNA targeting 
for immunity, with evolutionary roots in mobile 
elements enabling genome-editing applications. 
(27) CRISPR-Cas systems face challenges like off-
target effects and Cas toxicity, but strategies 
include developing novel variants with improved 
specificity and tailored delivery methods (28). 
Lastly, despite the extensive applications in gene 
editing, CRISPR-Cas systems face regulatory and 
functional complexities that require further 
exploration to enhance their efficacy and expand 
their technological repertoire (29). 
 
Types Of Genetic Modifications:  
Genetic engineering techniques like base editing, 
prime editing, knock-out, and knock-in have 
revolutionized gene function study, disease 
modeling, and personalized treatments, 
particularly in bone marrow cancers like leukemia 
and multiple myeloma. 
 
1)Knock-Out And Knock-In Modifications:  
CRISPR/Cas9 system is utilized for knock-out and 
knock-in genetic modifications, causing double-
stranded breaks at specific loci, often introducing 
frameshift mutations through non-homologous 
end joining pathways.(30) Knock-in involves 
introducing a foreign DNA sequence into a 
specific locus, facilitated by HDR pathways, for in-

depth functional genetics studies and therapeutic 
applications like animal disease models (31).  
 
2)Base Editing:  
Base editing is an advancement that allows precise 
conversion of one nucleotide base pair into 
another without creating double-strand breaks, 
thus reducing the risk of introducing unwanted 
insertions or deletions (32). Two main types of 
base editors have been developed—cytosine base 
editors (CBEs) and adenine base editors (ABEs), 
which allow for C-to-T and A-to-G conversions, 
respectively. These editors have shown potential in 
correcting point mutations responsible for genetic 
disorders by altering single nucleotide 
polymorphisms (33).  
 
3)Prime Editing:  
Prime editing is a highly versatile genome-editing 
technique that enables precise editing without the 
requirement of donor DNA or double-strand 
breaks. It can perform a wider array of edits, 
including all 12 possible base-to-base conversions, 
insertions, and deletions, making it an innovative 
tool for correcting a wider range of genetic 
mutations (34).  
 
APPLICATIONS AND INTEGRATION 
These genetic modification tools are being rapidly 
integrated into both basic and applied research 
settings, including plant biology, microbial 
engineering, and therapeutic gene editing.(35) 
They offer potential treatment strategies for 
genetic diseases and hold promise for developing 
improved crop varieties and novel cell lines for 
industrial applications (36) as shown in table no. 
1

Table 1. Utilizing CRISPR/Cas9 to treat infectious diseases 
Virus type Target gene Cell/animal Delivery method Result Ref 
HPV-16 E7 SiHa, Caski, C33A, and  

HEK293 cell lines 
Plasmid Induction of apoptosis and inhibition of 

tumor cell growth 
(37) 

HPV-16 E7 Mice PEGylated 
liposome 

Elimination of established tumors in 
immunocompetent mice 

(38) 

HIV-1 LTR Jurkat cells and HeLa 
cell line 

Plasmid Efcient cleavage of LTR target sites (39) 



The Research of Medical Science Review  
ISSN: 3007-1208 & 3007-1216  Volume 3, Issue 7, 2025 
 

https:thermsr.com                                      | Nisar et al., 2025 | Page 1018 

HPV-16 E6, E7 Mice Plasmid Activation of p53 and pRB signaling 
pathways, leading to impaired tumor 
growth 

(40) 

HBV Various sites Huh-7 cell line Mice Plasmid Clearance of intrahepatic HBV templates 
in vivo 

(41) 

HIV-1 LTR U3, T, 
and R region 

HEK293T cell line Lentivirus Enabling prolonged adaptive defense 
versus new viral infection 

(42) 

HIV-1 CXCR4 Ghost-CXCR4 cells, 
Jurkat cells, and primary 
human CD4+ T cells 

Lentivirus Resistance to HIV infection (43) 

HPV-16 E6/E7 SiHa cell line Lipofectamine Synergistic antitumor efect of E6/E7 KO 
using CRISPR system with PD1 
inhibitors of cancer cell 

(44) 

HPV-18 E7 Hela cell line Mice Micelle delivery, 
Lipofectamine 

Reducing the HPV induced cancerous 
activity 

(45) 

HIV-1 LTR HEK293T TZM-bl cells Plasmid Suppressing HIV-1 replication (46) 
 
CRISPR/CAS9 IN CAR-T CELL THERAPIES 
T effector cells have been genetically engineered 
using chimeric antigen receptors (CARs) to 
enhance tumoricidal and adoptive cellular therapy 
(ACT) effects (47). CARs, or recombinant 
synthetic surface receptors, identify cancer cell 
antigens and activate redirected effector cells, with 
a single-chain variable being the fundamental 
construct (48, 49). Among the hematological 
malignancies for which CAR-T cell therapy has 
shown exceptional results are multiple myeloma 
(MM), lymphoma, acute lymphoblastic leukemia 
(ALL), and chronic lymphocytic leukemia 
(CLL),(50) CAR-T cell research and development 
has also shown great promise in solid tumors like 
non-small cell lung cancer, melanoma, breast 
cancer, and sarcoma, (51, 52) CAR-T cell therapy 
faces three major barriers: individual autologous 

cell generation, cancer cell resistance, and 
undesirable toxicities and cytokine release 
syndrome. (CRS) Autologous CAR-T cells must 
be made on an individual basis, which hinders 
their widespread clinical use because of the costly 
and time-consuming production process. (53-55) 
In response to similar ligands produced by cancer 
cells, induced CAR-T cells may express 
immunological checkpoint molecules such as 
PD1, lymphocyte activation gene 3 (LAG3), or 
CD223. This inhibits CAR-T cells' ability to fight 
cancer. 
(56, 57) Fig 2 CRS may be brought on by increased 
GM-CSF, IL-6, and IL-1 release in addition to the 
concurrent activation of a sizable number of CAR-
T cells (58), as illustrated in figure number 2. 
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Fig 2: Utilizing a range of genes, including KO, HLA, GM-CSF, TCR, LAG-3, TGF-βR, DAG, and PD1, 

CRISPR/Cas9 enables future CAR-T cell production.(18) 
 
DELIVERY METHODS  
Gene and drug delivery requires both viral and 
non-viral delivery methods; viral vectors, such as 
AAVs, are very effective for precise gene editing in 
vivo(59). However, concerns such as 
immunogenicity and potential for mutagenesis 
have shifted attention towards non-viral vectors 
(60). Nanoparticles, a non-viral vector, offer safer, 
targeted delivery of therapeutic agents, improving 
effects and overcoming limitations like poor water 
solubility and passive targeting (61). Because of its 
versatility, electroporation a physical technique 
that briefly permeabilizes cell membranes using 
electric pulses is employed in gene electro transfer 
and therapeutic applications (62). The use of 
nanoparticles as drug carriers is further 
characterized by their ability to target specific sites 
within the body, utilizing passive and active 
targeting strategies, enhancing pharmacokinetics 
and diminishing systemic toxicity (63). The 
development of biomimetic nanoparticles, which 
mimic natural biological carriers, exemplifies the 
innovation in overcoming biological delivery 

barriers (64), While each delivery method presents 
unique benefits, they also confront limitations. 
Viral vectors still grapple with safety concerns, 
whereas non-viral strategies like nanotechnology 
must continue to address delivery efficiency and 
specificity (65). Continuous advancements in 
these technologies, guided by a growing 
understanding of their mechanisms and 
applications, are pivotal in optimizing their roles 
in therapeutic contexts (66). 
 
Limitations And Challenges 
Gene therapy treats hereditary and acquired 
diseases by using genome-editing tools such as 
Crispr-cas9. These therapies may, however, have 
unanticipated side effects, immunological 
responses, and mutations. To guarantee the 
effectiveness and safety of gene-based therapies, 
meticulous planning, testing, and creativity are 
essential. 
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Off-Target Effects:  
Despite advances in technology, off-target 
consequences from CRISPR-based gene editing 
can result in detrimental alterations. Despite 
advances in technology, off-target mutations 
compromise the safety and effectiveness of 
therapy(67). 
 
Immune Response:  
Gene therapy faces challenges due to immune 
responses to delivery vectors, including viral and 
CRISPR components, which can lead to cell 
elimination and reduced treatment efficacy, 
especially in conditions like hemophilia 
(68).Furthermore, the immune system's reaction 
to viral capsids and the potential development of 
inhibitors pose additional challenges (69). 
 
Precision And Safety:  
By employing lipid nanoparticles and biomaterials 
to target certain cells while lowering 
immunogenicity and off-target effects, advances in 
gene delivery methods are improving safety and 
precision (70). 
 
Ethical And Regulatory Concerns:  
Balancing rapid CRISPR progress with 
safety/equity requires precision editing, ethical 
oversight, and flexible regulations to tackle 
technical and societal challenges (71). 
 
DRUG THERAPIES IN GENETIC AND 
ACQUIRED DISEASES 
Drugs like NSAIDs and anticonvulsants treat 
genetic disorders, though side effects and genetic 
variability limit their effectiveness (72). Biologics 
include gene-targeted therapies like 
CRISPR/Cas9, which address genetic mutations 
directly (73), Pharmacological treatments face 
limitations: incomplete genetic correction, adverse 
effects, and chronic dependency (74). Gene 
therapy presents a promising synergistic potential 
when combined with drug treatments. For 
instance, gene therapy can provide sustained 
therapeutic effects and potentially cure genetic 
disorders by introducing or correcting defective 
genes in patients' cells (75, 76)  Such therapies are 

particularly effective in tackling monogenic 
diseases like inherited retinal disorders (77). 
 
RATIONALE FOR COMBINATION 
THERAPY 
Combining CRISPR with pharmacological agents 
presents several notable advantages, enhancing 
therapeutic interventions through various 
mechanisms such as overcoming resistance, 
improving efficacy, and enhancing delivery and 
expression efficiencies. 
 
1. Overcoming Resistance And Improving 
Efficacy:  
By precisely altering genes implicated in resistance 
pathways, CRISPR technology can improve 
therapeutic efficacy and efficiently address drug 
resistance in chemotherapy treatments (78). 
 
2. Enhancing Delivery And Gene Expression:  
Recent developments in gene editing applications 
demonstrate the effective use of adeno-associated 
viral vectors to deliver smaller CRISPR systems, 
allowing precise in vivo targeting of 
pharmaceutical drugs and improving therapeutic 
results (79). Additionally, combining CRISPR 
with liposome-based carriers enhances the delivery 
efficiency of CRISPR components, allowing for 
efficient editing of target genes (80). 
 
3. Temporal Regulation And Dosage Control:  
When used with pharmaceuticals, CRISPR allows 
for precise temporal regulation of gene editing, 
optimizing therapeutic benefits through timing 
and control of editing (81).  By targeting particular 
genetic components, improving drug 
administration, and advancing precision medicine 
through biochemical benefits and sophisticated 
transport methods, CRISPR-pharmacological 
partnership offers promise for the treatment of 
disease (82). 
 
How Drugs Enhance CRISPR Efficacy 
Drugs like AZD7648 (DNA-PK inhibitor) and 
Polθ blockers boost CRISPR fidelity and 
integration by controlling DNA repair pathways 
(83),Co-delivering FAK siRNA and CRISPR 
components in nanoparticles has doubled 
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CRISPR efficiency in tumor tissues, improving 
cellular uptake and penetration, thus enhancing 
editing efficiency in solid tumors (84). Advanced 
delivery methods (peptide/non-viral vectors) boost 
CRISPR precision and safety for therapeutic 
applications(85).The integration of drug-based 

approaches and innovative delivery strategies 
enhances CRISPR technology efficacy and 
precision, contributing to personalized medicine 
and targeted interventions for genetic 
disorders(86) as shown in Fig 3 

 

 
Fig 3: CRISPR screening uses pooled DNA oligos to target multiple genes, resulting in cell-infecting 

lentiviruses. Next-generation sequencing (NGS) can be used to identify genes that are present or absent, 
characterize resistance and sensitivity, and detect medication resistance or sensitivity(18) 

 
SAFETY AND ETHICAL CONSIDERATIONS 
1)Genotoxicity, Off-Target Effects, And Immune 
Reactions:  
CRISPR's curative potential demands improved 
precision, reduced risks, and ethical governance 
(87) 
 
2)Regulatory Landscape for Gene-Drug 
Therapies:  
CRISPR regulations vary globally (strict in EU, 
flexible in US), requiring standardized 
safety/efficacy frameworks (88) 
 
3)Ethical Concerns in Gene Editing:  
CRISPR's ease of use intensifies ethical debates 
over germline editing's societal and generational 
consequences (89) 
 
Challenges And Limitations 
1)Technical, Biological, and Cost Challenges:  

CRISPR delivery via nanomedicine shows promise 
yet requires optimization for safety, efficacy, and 
affordability to ensure equitable access (90) 
2)Scalability and Manufacturing: CRISPR's 
clinical scalability faces hurdles in manufacturing, 
IP disputes, and regulatory uncertainties, despite 
its transformative potential in biotechnology (91) 
 
Future Directions and Emerging Trends 
The next generation of CRISPR systems including 
Cas12 and Cas13 demonstrate superior precision 
and expanded editing capabilities (e.g., RNA 
targeting), reducing off-target effects and 
broadening therapeutic potential for complex 
diseases (92) Concurrently, AI-driven therapy 
design is revolutionizing precision medicine by 
optimizing gene-editing strategies through 
predictive modeling, enabling patient-specific 
treatments(93) A groundbreaking frontier is 
CRISPR’s application in polygenic diseases (e.g., 
diabetes, cardiovascular disorders), where 
multiplexed editing could simultaneously 
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modulate disease-associated gene networks, 
though this demands advanced delivery systems 
and rigorous regulatory evaluation(94) 
 
CONCLUSION 
CRISPR-drug combinations enhance gene therapy 
precision and efficacy for genetic disorders and 
cancer, but require improved delivery, reduced off-
target effects, and ethical solutions for clinical 
translation. 
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