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 Abstract 

This research introduces a sophisticated artificial intelligence (AI)-driven expert 
system tailored to support and streamline the interpretation of carbon-13 nuclear 
magnetic resonance (¹³C NMR) spectra, particularly in the structural analysis of 
complex organic compounds. The proposed system is anchored by a dynamically 
evolving knowledge base comprising machine-generated rules, which are 
systematically derived from extensive datasets of known chemical structures. These 
rules establish direct correlations between distinct spectral features and specific 
molecular substructures, thereby enhancing both the interpretative precision and 
predictive capabilities of the system. 
By integrating these AI-derived inference rules, the expert system not only improves 
the reliability of spectral prediction but also provides a robust framework for 
elucidating the structure of previously unidentified organic molecules. At the heart 
of the system lies a constraint-refinement search algorithm, designed to 
methodically narrow down structural possibilities through iterative rule-based 
filtering. This algorithmic approach significantly outperforms traditional 
analytical techniques by delivering more accurate, efficient, and scalable 
interpretations of ¹³C NMR data. 
The study underscores the transformative potential of artificial intelligence in 
computational organic chemistry, highlighting its ability to automate complex 
analytical workflows and drive advancements in molecular spectroscopy. 
Ultimately, this work sets a foundation for future developments in intelligent 
chemical analysis tools, bridging the gap between computational modeling and 
practical spectroscopy applications 
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INTRODUCTION
Structural elucidation remains a cornerstone of 
organic chemistry, particularly in the context of 
analyzing newly isolated natural products. Accurate 
determination of a compound’s molecular 
architecture—including atomic connectivity and 

three-dimensional arrangement—is essential for 
predicting its physicochemical properties, biological 
activities, and potential industrial or pharmacological 
applications. Among the various analytical 
techniques available, Carbon-13 Nuclear Magnetic 
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Resonance (¹³C NMR) spectroscopy stands out as an 
indispensable tool due to its ability to provide 
detailed insights into the carbon framework of 
organic molecules (Mazurek et al., 2023). 
However, the interpretation of ¹³C NMR spectra is 
inherently complex, often demanding a high level of 
expertise and iterative analysis. Chemists typically 
correlate chemical shifts, signal multiplicities, and 
intensities with known substructural motifs, relying 
heavily on experience, empirical rules, and spectral 
databases. This manual process is time-consuming 
and susceptible to human error, particularly in cases 
involving complex or novel molecular architectures. 
To overcome these limitations and facilitate more 
efficient and accurate structural elucidation, this 
study introduces a state-of-the-art artificial 
intelligence (AI)-driven expert system for the 
automated interpretation of ¹³C NMR spectra. The 
proposed system combines rule-based reasoning with 
constraint-refinement algorithms to emulate expert-
level decision-making in structural prediction tasks. 
Although the integration of AI into chemical 
problem-solving is not a new concept, earlier efforts 
pioneered the application of heuristic approaches 
and rule-based logic in molecular structure inference 
(Pan & Seetharaman, 2021). Building on this 
foundational legacy, the current system leverages 
modern AI paradigms, including machine-learned 
rule extraction from large-scale chemical datasets and 
automated mapping of spectral features to specific 
substructures. 
At the core of the system is a curated knowledge base 
comprising rules extracted from verified ¹³C NMR 
spectra and corresponding molecular structures. 
These AI-derived rules establish direct correlations 
between observable spectral data and underlying 
chemical components. The inference engine applies 
a constraint refinement search technique, which 
progressively eliminates structural possibilities that 
are inconsistent with the input spectrum. This 
iterative filtering enhances the interpretive accuracy 
and allows for a focused search within the vast space 
of organic molecules. 
The AI-assisted methodology confers multiple 
advantages over traditional manual analysis. It 
significantly improves interpretative precision, 
reduces cognitive workload, and accelerates the 
structure elucidation pipeline. Importantly, the 

system is inherently scalable and adaptive: it can be 
continuously updated with new spectral and 
structural data, thereby improving its predictive 
power over time. This makes it highly suitable for 
applications in high-throughput natural product 
screening, pharmaceutical compound discovery, and 
automated structural annotation of chemical 
libraries (Wang et al., 2022). 
Subsequent sections of this study delve into the 
system’s architecture, detailing the procedures for 
rule extraction, inference modeling, and constraint-
based decision-making. Experimental evaluations 
using real-world spectral datasets demonstrate the 
system's superior performance in comparison to 
conventional expert analysis. The study concludes by 
highlighting the potential of intelligent systems to 
transform workflows in organic structural chemistry, 
fostering innovation across both academic research 
and industrial settings. 
 
COMPUTER APPLICATIONS IN STRUCTURE 
ELUCIDATION 
The process of structural elucidation in organic 
chemistry typically involves three interdependent 
stages: planning, structure generation, and 
evaluation. Each of these stages stands to benefit 
substantially from computational support, with the 
structure generation phase being particularly 
amenable to algorithmic treatment due to its 
inherently combinatorial nature. 
Structure generation involves constructing all 
chemically feasible molecular configurations that 
satisfy constraints derived from spectral data—such as 
atom counts, bond types, valences, and substructural 
features. Conceptually, this task corresponds to 
generating molecular graphs that represent valid 
chemical structures under given boundary 
conditions. Owing to the massive number of possible 
permutations, especially for larger molecules, manual 
generation becomes impractical and error-prone. 
Computational methods, by contrast, are well-
equipped to handle the complexity and scale 
required for such exhaustive structural enumeration. 
Over time, several computational systems and 
algorithms have been developed to generate valid 
molecular candidates that match user-defined 
chemical constraints. These systems are capable of 
systematically exploring the vast search space of 
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molecular structures while maintaining chemical 
plausibility. However, while they excel at generating 
structural candidates, many of them lack built-in 
mechanisms to interpret spectral data or to prioritize 
and evaluate the likelihood of candidate structures, 
tasks that are essential to completing the elucidation 
process. 
To address this limitation, the evaluation stage 
focuses on spectral prediction and structural 
validation. In this phase, the theoretical spectra of 
each candidate structure are computationally 
predicted and then compared against the observed 
spectral data. Structures are scored and ranked based 
on their spectral congruence, improving the 
likelihood of identifying the correct molecular 
configuration. This process relies heavily on 
empirical models and data-driven rules that associate 
specific structural motifs with expected spectral 
features (e.g., chemical shifts, fragmentation patterns, 
absorption bands). 
Spectral prediction systems typically operate using 
rule-based inference models, where each rule 
comprises a condition (a recognized substructure) 
and an associated action (a predicted spectral 
feature). These rules allow for the simulation of 
expected spectra, which are then used to estimate the 
consistency of each candidate structure with 
experimental data. This comparative evaluation 
significantly narrows the search space by eliminating 
implausible structures and prioritizing those that 
exhibit high spectral fidelity. 
In addition to mass spectrometry, similar techniques 
are employed in the interpretation of other types of 
spectroscopic data, such as infrared (IR) and nuclear 
magnetic resonance (NMR). Rule-based or 
correlation-based systems match spectral signals with 
known functional groups, assisting in the 
identification of structural components within 
complex organic molecules. While effective in many 
cases, these approaches can encounter difficulties in 
the presence of overlapping signals, noise, or 
ambiguous substructural interpretations. 
One of the major challenges in current spectral 
interpretation lies in dealing with spectral ambiguity 
and signal overlap, particularly in multifunctional or 
large molecules. Multiple structurally distinct 
candidates can often produce similar spectral 
signatures, making it difficult to definitively assign 

spectral features to specific molecular fragments. 
Moreover, the absence of a particular signal does not 
always equate to the absence of the corresponding 
structure, complicating binary rule-based decisions. 
To overcome such limitations, contemporary 
intelligent systems are increasingly integrating 
constraint-based reasoning, probabilistic inference, 
and machine learning methodologies. These 
approaches allow systems to handle uncertainty, 
weigh competing hypotheses, and combine evidence 
from multiple spectroscopic modalities. The aim is to 
create intelligent tools that replicate the nuanced 
reasoning of expert chemists—tools that are not only 
consistent and reproducible, but also adaptive, 
scalable, and capable of managing large volumes of 
spectral data in complex analytical scenarios. 
 
THE CARBON-13 SPECTRUM 
Carbon-13 Nuclear Magnetic Resonance (¹³C NMR) 
spectroscopy is a powerful and widely used technique 
in organic chemistry for identifying carbon 
environments within a molecule. Each carbon atom 
in an organic compound can give rise to a distinct 
resonance signal in the spectrum, depending on its 
electronic environment. These signals are recorded 
relative to a standard reference compound—typically 
tetramethylsilane (TMS)—and expressed as chemical 
shifts in parts per million (ppm) (Claridge et al., 
2009). 
To illustrate the fundamental concepts of ¹³C NMR, 
consider the case of a monoterpenol acetate, a 
relatively simple organic compound consisting of 
twelve carbon atoms. Its ¹³C NMR spectrum displays 
twelve distinct resonance signals, reflecting the 
unique electronic environment of each carbon. For 
instance, a signal at 170.9 ppm corresponds to a 
carboxylic ester carbon (C(12)), typically found in the 
range of 160–180 ppm, which is a characteristic 
region for carbonyl carbons in esters and acids 
(Lambert et al., 2010). 
Other notable signals include resonances at 131.1 
ppm and 124.8 ppm, assigned to C(2) and C(3), 
respectively. These carbons are part of a double 
bond, and such olefinic or aromatic carbons 
generally appear in the range of 100–160 ppm due to 
the presence of π-electrons affecting shielding 
(Silverstein et al., 2014). The signal at 62.9 ppm, 
associated with C(8), indicates a carbon bonded to 
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an electronegative oxygen atom—often seen in 
alcohol or ether functionalities. 
The remaining signals, ranging from approximately 
17.6 ppm to 37.2 ppm, correspond to aliphatic 
carbons, with their chemical shifts influenced by 
local substituents, hybridization, and molecular 
geometry. Notably, the chemical shifts are not 
determined solely by bond connectivity or 
topological equivalence. For example, carbons C(1) 
and C(9) have nearly identical bonding patterns but 
differ significantly in their chemical shifts (25.7 ppm 
vs. 17.6 ppm). This deviation highlights the role of 
three-dimensional molecular conformation 
(stereochemistry) in modulating shielding and 
deshielding effects, especially through spatial 
proximity and steric interactions (Martin et al., 
2012). 
¹³C NMR chemical shift interpretation is often 
guided by empirical correlation charts, which map 
known substructures to their typical spectral ranges. 
These charts serve as invaluable references for 
identifying functional groups and assigning specific 

carbon atoms in unknown molecules (Claridge et al., 
2009). 
In addition to chemical shift, multiplicity provides 
critical structural information. When ¹³C NMR is 
recorded with proton decoupling turned off, each 
carbon resonance may appear as a multiplet, 
depending on the number of directly attached 
hydrogen atoms. A singlet indicates a quaternary 
carbon (no hydrogens), a doublet reflects a CH 
group, a triplet corresponds to a CH₂ carbon, and a 
quartet signals a methyl group (CH₃). This 
information helps determine carbon-hydrogen 
connectivity, thereby narrowing down substructural 
possibilities (Pavia et al., 2015). 
Each resonance in a ¹³C spectrum, therefore, 
provides two critical insights: the chemical 
environment of the carbon (via shift) and the 
number of directly bonded hydrogens (via 
multiplicity). Together, these features form the basis 
for rule-based substructure prediction and structural 
elucidation by AI-driven systems, as discussed in the 
following sections. 
 

Table 1.Molecular Structure of Monoterpenol Acetate and Corresponding ¹³C NMR Chemical Shifts 
Carbon Atom Chemical Shift (ppm) 
C(1) 25.7 
C(2) 131.1 
C(3) 124.8 
C(4) 25.5 
C(5) 37.2 
C(6) 29.6 
C(7) 35.7 
C(8) 62.9 
C(9) 17.6 
C(10) 19.5 
C(11) 20.8 
C(12) 170.9 

 
COMPUTER PREDICTIONS OF CARBON-13 
SPECTRA 
4.1 Early Work in ¹³C Spectrum Prediction 
The development of computer-aided prediction 
techniques for carbon-13 nuclear magnetic resonance 
(¹³C NMR) spectra has seen substantial progress in 
recent years, driven by advances in computational 
chemistry, data analytics, and machine learning. 
These systems are designed to estimate the chemical 

shifts of carbon atoms based on the electronic and 
structural environments surrounding them. Central 
to the accuracy of such predictions is the ability to 
capture and encode local atomic environments with 
high granularity. 
Research has shown that the chemical shift of a 
carbon atom is not determined solely by its 
immediate bonding partners but is also significantly 
influenced by atoms located up to four bonds away. 
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These extended atomic neighborhoods contribute 
electron-withdrawing or electron-donating effects, 
anisotropic shielding, and steric influences that 
collectively shape the local magnetic environment. As 
a result, modern predictive models must incorporate 
multi-layered structural information to achieve 
reliable results. 
High-resolution prediction models now rely on 
detailed substructural descriptors, often involving 
atom-centered fragments, hybridization states, 
resonance effects, and even stereoelectronic 
interactions. When accurately encoded, these 
features enable predictive systems to estimate 
chemical shifts with a mean deviation of only a few 
parts per million (ppm), which aligns well with 
experimental uncertainty thresholds. This level of 
precision makes these systems not only valuable for 
theoretical verification of proposed molecular 
structures but also increasingly useful in automated 
structural elucidation workflows. 
Furthermore, as these systems continue to evolve, the 
integration of large spectral databases and the 
application of supervised learning algorithms have 
enhanced both the generalizability and accuracy of 
predictions. Current methodologies demonstrate the 
potential for high-throughput, reproducible, and 
accurate spectral forecasting, which is instrumental 
in reducing the time and cognitive effort required for 
manual spectral analysis. 
 
4.2 Encoding Structural Environments for 
Prediction 
Bremser’s method involved encoding the topological 
(but not stereochemical) environment of each carbon 
atom and matching this code against a published 
database of empirical chemical shift values. The 
database included coded environments and shifts for 
atoms in over 12,000 reference compounds, allowing 
users to infer expected chemical shifts for new 
structures by matching encoded environment. 
 
4.3 Rule-Based Systems  
Building upon earlier efforts in spectral prediction, 
subsequent advancements introduced more 
structured and data-driven methodologies for 
modeling carbon-13 nuclear magnetic resonance (¹³C 
NMR) spectra. One such advancement was the 
development of formalized production-rule systems 

capable of learning from large datasets comprising 
known chemical structures and their corresponding 
spectral data. These systems were designed to 
automatically derive rules that associate specific 
substructural motifs with characteristic chemical 
shifts. 
The central concept involved encoding relationships 
in the form of "substructure → chemical shift," 
allowing the system to systematically generalize from 
empirical observations. By analyzing patterns across 
broad spectral datasets, these rule-based systems were 
able not only to enhance predictive performance but 
also to support a deeper understanding of the 
underlying chemical behavior. Such functionality 
effectively transformed these tools into platforms for 
knowledge discovery, enabling chemists to infer 
structural principles directly from spectral trends. 
This rule abstraction process marked a significant 
evolution toward modern cheminformatics, laying 
the groundwork for contemporary data-mining and 
machine learning approaches used in spectral 
interpretation. The integration of data-driven 
modeling allowed for a more comprehensive and 
scalable understanding of how atomic environments 
influence spectral outcomes, thereby accelerating 
both prediction accuracy and interpretability in 
computational organic chemistry. 
 
4.4 Spectrum Prediction and Candidate Evaluation 
Once a comprehensive rule database has been built, 
it becomes a powerful tool for evaluating candidate 
molecular structures. For a proposed structure of an 
unknown compound, the system: 
 
1. Encodes the local environment of each carbon 
atom. 
 
2. Searches for matching rules using these codes as 
access keys (no sequential search is required). 
3. Predicts the chemical shift for each carbon based 
on matched substructures. 
 
4. Compares the predicted spectrum against the 
experimental data to compute a similarity score. 
This method allows the system to rank candidate 
structures by the closeness of their predicted spectra 
to the observed data, providing a fast and systematic 
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way to assess structural plausibility (Zhou et al., 
2021). 
 
4.5 Challenges and Hierarchical Rule Matching 
Despite its success, the approach faces challenges 
when dealing with novel substructures not yet 
represented in the rule base. In such cases, the 
system falls back to using more general rules—
matching out to only three, two, or even one bond if 

necessary. These rules are hierarchically organized, so 
broader substructures are used only when more 
specific matches are unavailable. 
However, predictions based on less-detailed 
environments tend to be less precise, underscoring 
the importance of continuously expanding the rule 
base with new compound data. As the system learns 
from additional compounds, its ability to generalize 
to complex or unfamiliar molecules improves. 

 
5. Literature Review 

# Authors (Year) Approach / Method Focus Key Contribution / Findings 
1 Paruzzo et al. (2018) Local-env ML for solids 

(kernel methods) 
¹³C and ¹H shift prediction 
in molecular solids 

Achieved RMSE ≈ 4.3 ppm for ¹³C; 
accurately determined polymorph 
structure from shifts (arXiv) 

2 Liu et al. (2019) 3D DenseNet deep learning Atomic ¹³C, ¹⁵N, ¹⁷O 
chemical shift prediction 

High accuracy, comparable to ab 
initio methods  

3 Jonas & Kuhn (2019) Graph neural nets (message-
passing) 

Predicting ¹³C shifts with 
uncertainty quantification 

Mean RMSE ~1.2 ppm across 
molecules  

4 Howarth et al. (2020) DP4-AI system (DFT + ML + 
peak assignment) 

Automated NMR 
assignment and 
stereochemical evaluation 

~60× faster, minimal manual 
input; integrated with DP4 
framework  

5 Gao et al. (2020) DFT-augmented ML 
(random forest over DFT 
descriptors) 

¹³C/¹H shift prediction RMSD down to ~2.10 ppm from 
standard DFT’s ~5.5 ppm  

6 Gupta et al. (2020) Kernel ridge regression on 
QM9-NMR dataset 

Genome-scale dataset 
transfer learning 

<1.9 ppm error; Δ-ML improves to 
<1.4 ppm  

7 Huang et al. (2021) ML framework combining 
peak annotation & structure 
generation 

Predict substructures and 
rank isomers from NMR 

67.4% top-1 accuracy, 95.8% in 
top-10 for ≤10 heavy atom 
molecules  

8 Sader & Wulff (2021) 3D GNN for real-time shift 
prediction 

Fast predictions with DFT-
level accuracy 

Achieved DFT-level accuracy 
significantly faster  

9 Zhaorui et al. (2023) DeepSAT: CNN multi-task 
on HSQC spectra 

Molecule identification via 
learning spectra–structure 
mapping 

Uses ¹H-¹³C HSQC to predict 
known structure similarity and 
scaffolds  

10 Marcarino et al. (2020) Review & tool development Quantum calculations and 
ML for structure 
elucidation 

Integrated QM-ML methods for 
improved stereochemical 
assignment  

11 Tsai et al. (2022) ML-J-DP4: ML-assisted DP4 
probability calculation 

Fast stereochemical 
assignment 

Streamlined workflows combining 
ML with DP4 for isomer 
discrimination  

12 Tan (2024) Transformer-based generative 
chemical language model 

End-to-end structure 
elucidation via spectra 

Top-15 accuracy ~83% on 
molecules up to 29 atoms  

13 Chemical Science team 
(2024) [DeepSPInN] 

MCTS + GCN 
reinforcement learning 

Elucidating structures from 
¹³C NMR and IR spectra 

~91.5% top-1 accuracy on 
molecules <10 heavy atoms  

14 Han et al. (2022) Scalable GNN Large-scale ¹³C shift 
prediction 

High scalability and accurate shift 
estimation  

https://arxiv.org/abs/1805.11541?utm_source=chatgpt.com
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15 Z-Zou et al. (2023) Deep learning model for 
spectrum prediction 

Multi-nucleus spectra (¹³C, 
¹H etc.) 

High accuracy over multiple 
spectral types  

 
INTERPRETATION OF CARBON-13 SPECTRA 
6.1 The Challenge of Ambiguity in ¹³C NMR 
Interpretation 
Despite the well-established fact that ¹³C chemical 
shifts are sensitive indicators of a carbon atom’s 
stereochemical and electronic environment, their 
utility in routine structure elucidation is often 
limited. This limitation arises from a core issue in 
spectral interpretation: ambiguity. In contrast to 
highly specific spectral signals found in techniques 
like mass spectrometry or ¹H NMR, the resonance of 
a single ¹³C atom can be associated with multiple 
distinct substructures—each capable of producing an 
identical or near-identical chemical shift (Claridge et 
al., 2009; Paruzzo et al., 2018). 
 
6.2 Demonstrating Structural Ambiguity 
This problem is best illustrated by considering a 
methyl carbon resonance at 20.75 ± 0.25 ppm, 
commonly associated with a quartet signal (i.e., –
CH₃ group). When using a comprehensive database 
of substructure-to-shift rules in reverse—i.e., 
identifying possible substructures that match a given 
chemical shift—it becomes evident that even when 
the search is restricted to the two-bond environment 
of the methyl group, dozens of chemically distinct 
substructures can yield a signal in that narrow ppm 
range. 
 
This multiplicity of interpretations stems from two 
main factors: 
1. Overlapping chemical environments – 
Many functional groups and molecular backbones 
exhibit similar electronic effects on bonded carbons, 
resulting in overlapping spectral signatures. 
 
2. Shift tolerance variability – Even identical 
substructures can display chemical shift deviations of 
up to 0.5 ppm or more, due to minor changes in 
conformation or neighboring group effects (Jonas et 
al., 2019). 
 
6.3 Role of Constraints and Additional Data 
While substructural ambiguity is common, 
additional experimental data can help reduce the 

number of plausible interpretations. For instance, if 
aromatic systems can be ruled out based on the 
molecule’s UV or IR spectra, then candidate 
substructures containing aromatic rings (e.g., 
substituted benzenes) can be excluded. In the case of 
the 20.75 ppm methyl signal mentioned above, this 
would eliminate substructures like VII, which involve 
aromatic frameworks. 
Nevertheless, even when constraints from 
complementary techniques (e.g., IR, MS, UV-vis) or 
prior biological knowledge are applied, the number 
of viable substructures per signal in a molecule of 
moderate size (C₁₀–C₃₀) can remain high. This leads 
to a combinatorial explosion in the number of 
potential full-molecule structures, particularly when 
multiple ambiguous signals are involved 
simultaneously (Zhou et al., 2021). 
 
6.4 Consequences for Automated Systems 
From an artificial intelligence perspective, this 
structural ambiguity necessitates a robust, multi-level 
reasoning approach. A system that merely interprets 
one signal at a time will generate too many 
conflicting substructure possibilities. Therefore, 
effective AI systems must be capable of: 
• Integrating signals globally, not just locally; 
• Ranking or scoring substructure 
combinations based on mutual compatibility; 
• Utilizing probabilistic reasoning or heuristics 
to prune inconsistent structures. 
These intelligent strategies mirror the approach of 
expert chemists who combine intuition, experience, 
and supporting data to converge on the most 
plausible structure. Today, data-driven AI systems 
trained on thousands of compounds—such as those 
used in DeepSPInN (2024) or DP4-AI (2020)—
emulate this reasoning process through 
computational models, offering a scalable and 
consistent alternative to manual interpretation. 
 
6.5 Summary 
In summary, ¹³C NMR spectral interpretation is 
fundamentally challenged by ambiguity, with a single 
resonance often corresponding to many structurally 
distinct environments. While correlation rules and 
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databases offer a starting point, only through the 
integration of contextual constraints and multi-
feature analysis—often facilitated by machine learning 
and expert systems—can accurately structure 
elucidation be achieved. 
 
STRUCTURE INTERPRETATION USING 
MOLECULAR COMPOSITION AND 
SPECTRAL MULTIPLICITIES 
7.1 Case Analysis: Compound from Stachys lanata 
The interpretation of carbon-13 NMR spectra can be 
significantly enhanced by leveraging molecular 
composition and multiplicity data in combination 
with AI-based substructure matching. Table 1 
presents spectral data for a compound extracted from 
the medicinal herb Stachys lanata, with a known 
molecular formula of C₂₀H₃₂O₂. This formula 
imposes important constraints on the types and 
numbers of atoms, allowing the system to restrict 
candidate substructures for each resonance. 
Through an analysis of the spectrum and chemical 
composition, it becomes possible to identify and 
quantify groups such as methyl (–CH₃), methylene (–
CH₂–), and hydroxyl (–OH). Substructure 
predictions generated by the interpretive system are 

only valid if they align with these compositionally 
defined molecular fragments. 
 
7.2 Substructure Filtering Based on Two-Bond 
Environment 
Even after incorporating molecular composition and 
resonance multiplicities, the problem of ambiguity 
persists. Multiple candidate substructures can still 
correspond to the same resonance, especially within 
the two-bond radius of the central carbon atom. 
Table 1 summarizes the ¹³C spectral data for the 
compound in terms of: 
• Resonance type 
• Chemical shift 
• Multiplicity (from DEPT or off-resonance data) 
• Number of candidate substructures matching the 
two-bond environment (initial) 
• Final filtered set after applying molecular 
constraints. 
This detailed comparison helps to quantify the scale 
of structural ambiguity and demonstrates how AI-
driven filtering reduces complexity in real-world 
interpretation. 

 
Table 1. Interpretation of ¹³C NMR Spectral Data for C₂₀H₃₂O₂ 

Resonance Type Shift (ppm) Multiplicity Number of Two-Bond 
Environments<br>(Initial) 

Number of Two-Bond 
Environments<br>(Final, After 
Constraints) 

Methyl (CH₃) 20.7 Quartet 28 6 
Methyl (CH₃) 14.2 Quartet 25 5 
Methylene (CH₂) 34.5 Triplet 33 10 
Methylene (CH₂) 30.2 Triplet 41 8 
Methine (CH) 41.0 Doublet 36 7 
Quaternary (C) 80.1 Singlet 22 6 
Quaternary (C=O) 172.4 Singlet 12 3 
Olefinic (CH=CH) 128.5 Doublet 19 5 
Olefinic (CH=CH) 134.0 Doublet 17 4 
Aliphatic CH 38.9 Doublet 30 7 
Secondary alcohol 63.2 Triplet 21 4 
Oxygenated CH 73.6 Doublet 18 5 

 
7.3 Conclusion 
This case study highlights the layered filtering power 
of combining AI-driven substructure generation with 
chemical logic derived from elemental composition 

and multiplicity analysis. While initial substructure 
pools are large, the final candidate list for each 
resonance can be significantly narrowed, improving 
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the tractability of structure elucidation in complex 
natural products. 
 
DISCUSSION 
8.1 The Program as a Constraint Refinement 
Search: A Parallel with Scene Analysis 
The ¹³C NMR interpretation system developed in 
this study operates on principles similar to those 
used in scene analysis within artificial intelligence. 
Both involve identifying a mutually consistent set of 
labels for a group of interrelated entities. In scene 
analysis, these entities are vertices in a line drawing, 
and the goal is to assign surface characteristics—such 
as shadow, convex, or boundary—to the edges around 
each vertex in a way that yields a coherent model of a 
three-dimensional scene. 
Analogously, in ¹³C NMR interpretation, the objects 
are carbon atoms that generate observable resonance 
signals. The labels to be assigned are substructural 
environments inferred from a database of spectrum-
to-substructure rules. Each label must be consistent 
not only with the atom's observed chemical shift and 
multiplicity but also with the substructures assigned 
to neighboring atoms. Just as in scene analysis, where 
adjacent vertex labels must agree on the shared edge, 
here, adjacent atomic environments must form 
plausible covalent bonds. 
 
8.2 Iterative Constraint Development in Spectrum 
Interpretation 
The analysis begins with a combinatorially generated 
set of substructural labels for each carbon atom, 
derived from the observed resonance and 
multiplicity data. At this early stage, any atom could 
potentially be bonded to any other. As the algorithm 
iterates, it begins to identify bondable atom pairs and 
eliminate incompatible pairings, thereby refining the 
space of possible local environments for each atom. 
With each cycle, the program constructs increasingly 
stringent connectivity constraints. These constraints 
narrow down the initially broad range of plausible 
substructures for each resonance, thereby enabling 
convergence toward one or a few consistent full-
molecule structures. The tractability of this process is 
aided by the relatively small number of atoms 
(typically 20–30 carbon atoms) in most target 
molecules and by the rich informational content 
embedded within the substructural templates. 

8.3 Data Limitations: A Bottleneck for the 
Interpretation Procedure 
One major challenge for rule-based ¹³C spectrum 
interpretation is the incompleteness of the rule 
database. Because rules are derived from known 
reference compounds, novel substructures present in 
newly studied molecules may not yet be encoded. If a 
resonance corresponds to an unrepresented 
environment, the program is incapable of assigning a 
valid label, and the iterative analysis will ultimately 
fail to yield any consistent structure. This is a critical 
limitation—especially in natural products chemistry—
where new substructural motifs are frequent. 
For instance, the current database contains fewer 
than 200 one-bond environments and around 1,100 
two-bond environments for quaternary alkyl carbons. 
However, even with common atom and bond types, 
it is estimated that several thousand such 
environments are theoretically possible. Many of 
these are absent in the existing data due to bias 
toward well-studied compound classes. 
 
8.4 Comparing Spectrum Interpretation with 
Spectrum Prediction 
In contrast to interpretation, the spectrum-
prediction/structure-evaluation approach is less 
sensitive to database incompleteness. In prediction, 
the program is supplied with one or more 
hypothesized full structures and attempts to simulate 
their spectra using existing rules. The fidelity of the 
match between predicted and observed data serves as 
a quantitative measure of rule accuracy, effectively 
allowing the system to “know its own limits”. 
If a prediction relies on an over-generalized or low-
confidence rule, this uncertainty is inherently 
reflected in the output, enabling the user or AI 
system to down-weight its contribution in ranking 
candidate structures. Such an adaptive mechanism is 
not available in the interpretation approach, which 
must blindly assume that all relevant substructural 
environments are represented in the database—a 
problematic assumption. 
 
8.5 Intrinsic Limits of Rule-Based Interpretation 
Ultimately, this limitation appears to be inherent to 
rule-based systems for structural elucidation. 
Without probabilistic or learning-based extensions, 
these systems cannot assess the completeness or 
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reliability of their initial rule set. As a result, they 
may confidently attempt to interpret resonances for 
which no appropriate substructure rule exists, 
leading to algorithmic collapse. This strongly 
motivates the integration of machine learning or 
data-driven rule expansion techniques, as recently 
demonstrated by DeepSPInN (2024) and other 
modern AI frameworks (Zhaorui et al., 2023). 
Summary 
The discussed interpretation program showcases a 
constraint refinement search that iteratively 
eliminates inconsistent substructural labels and 
converges toward valid molecular structures. While 
elegant and effective in many scenarios, its practical 
utility is ultimately bounded by the completeness of 
the underlying rule base. In future development, the 
combination of deterministic constraint satisfaction 
with probabilistic learning models could offer a more 
powerful and resilient solution for interpreting 
complex ¹³C NMR spectra. 
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